These images showcase the ancient globular cluster 47 Tucanae, a dense swarm of up to a million stars. The image at left shows the entire cluster, which measures about 120 light-years across. Located in the southern constellation Tucana, the cluster is about 16,700 light-years away. The image is part of the Sloan Digital Sky Survey and was taken by the UK Schmidt Telescope at Siding Spring Observatory in New South Wales, Australia. The white rectangular box outlines the view taken by NASA's Hubble Space Telescope. That image, shown at right, captures close-up views of thousands of cluster stars. The large, bright stars in the image are red giants. These stars have puffed up to several times their normal size because they have exhausted their nuclear fuel and are near the end of their lives. The image was taken by Hubble's Advanced Camera for Surveys. (Credit: NASA, ESA, Digitized Sky Survey (DSS; STScI/AURA/UKSTU/AAO), H. Richer and J. Heyl (University of British Columbia), and J. Anderson and J. Kalirai (STScI)) Enlarge

July 18, 2013 — Astronomers using NASA's Hubble Space Telescope have determined the orbital motion of two distinct populations of stars in an ancient globular star cluster, offering proof they formed at different times and providing a rare look back into the Milky Way galaxy's early days.

Researchers led by Harvey Richer of the University of British Columbia in Vancouver combined recent Hubble observations with eight years' worth of data from the telescope's archive to determine the motions of the stars in the globular cluster 47 Tucanae, which is located about 16,700 light-years away in the southern constellation Tucana.

The analysis enabled researchers, for the first time, to link the movement of stars within the cluster with the stars' ages. The two populations in 47 Tucanae differ in age by less than 100 million years.

"When analyzing the motions of stars, the longer the time baseline for observations, the more accurately we can measure their motion," said Richer. "These data are so good, we can actually see the individual motions of the stars within the cluster. The data offer detailed evidence to help us understand how various stellar populations formed in such clusters."

The Milky Way's globular clusters are the surviving relics from our galaxy's formation. They offer insights into the early history of our galaxy. 47 Tucanae is 10.5 billion years old and one of the brightest of our galaxy's more than 150 globular clusters. The cluster measures about 120 light-years wide.

Previous spectroscopic studies revealed many globular clusters contain stars of varying chemical compositions, suggesting multiple episodes of star birth. This Hubble analysis supports those studies, but adds the stars' orbital motion to the analysis.

More of the story, click image