(Phys.org)—Even comparatively small meteorite impact craters may have played a key role in the origin and evolution of early life on Earth, according to a researcher at The University of Western Australia.

Geologist Martin Schmieder, a research associate in UWA's School of Earth and Environment, said study results suggested that heat generated by an asteroid impact took at least several hundred thousand years to dissipate.

Dr Schmieder, the lead author of an article published this month in the prestigious journal Geochimica et Cosmochimica Acta, said as impact craters cooled, they provided an ideal environment for microbial life to thrive.

He and fellow researcher Dr Fred Jourdan, Director of the Western Australian Argon Isotope Facility at Curtin University, are experts in the study of rocks and minerals from craters produced by the hypervelocity impact of incoming asteroids and comets (termed meteorites once they have hit the Earth's surface).  Impact craters are common features in the solar system.

"As a case study, we analysed impact-molten rock samples from the 23km-diameter and 76-million-year-old Lappajärvi crater in Finland, and were quite surprised by the results," Dr Schmieder said.

More of the story, click image