How the Yarkovsky Effect slows an asteroid's orbital motion; opposite rotation direction would speed up the orbital motion. Credit: Alexandra Bolling, NRAO/AUI/NSF Enlarge

(Phys.org)—The record-setting close approach of an asteroid on Feb. 15 is an exciting opportunity for scientists, and a research team will use National Radio Astronomy Observatory (NRAO) and NASA telescopes to gain a key clue that will help them predict the future path of this nearby cosmic neighbor.

A 150-foot-wide asteroid called 2012 DA14, discovered just a year ago, will pass only 17,200 miles above the Earth on Feb. 15. That's closer than the geosynchronous communication and weather satellites. While the object definitely will not strike the Earth, this is a record close approach for an object of this size. Astronomers around the world are preparing to take advantage of the event to study the asteroid.

A team including NRAO astronomer Michael Busch will use a novel observing technique to determine which way the space rock is spinning as it speeds on its orbit through the Solar System. The direction of its spin is an important factor in predicting how the object's orbit will change over time.

"Knowing the direction of spin is essential to accurately predicting its future path, and thus determining just how close it will get to Earth in the coming years," Busch said

Busch's team will use the Karl G. Jansky Very Large Array (VLA) and the Very Long Baseline Array (VLBA) antennas at Pie Town and Los Alamos, New Mexico, along with a Solar System radar on NASA's 230-foot antenna at Goldstone, California. The Goldstone antenna will transmit a powerful beam of radio waves toward the asteroid, and NRAO's New Mexico antennas will receive the waves reflected from the asteroid's surface.

More of the story, click image